
HelioLinC is an algorithm that discovers solar system objects in transient source 
catalogs by propagating tracklets along hypothesized orbits and clustering the resulting 
heliocentric positions at common reference epochs.  For near-Earth objects (NEOs), 
which frequently have non-linearly varying heliocentric ranges as a function of time       , 
the search space of hypothesized orbits is increased compared to other orbit classes.  
We can, however, dramatically reduce that space by testing the projected heliocentric 
angular sweep of a tracklet against the sweep of the hypothesized orbit.  If a tracklet 
has a swept angle discrepancy with respect to the hypothesized orbit (a SAD tracklet), 
we don’t have to propagate or cluster it which saves both substantial compute time and 
reduces the number of confounding tracklets in the clustering phase space.  In the limit 
where we choose an object’s true        for the hypothesis orbit and reject SAD tracklets, 
we can reduce propagation and clustering counts by over 95% without sacrificing 
object recovery rates – meaning we propagate and cluster almost nothing other than 
the tracklets that conform to the hypothesis orbit.  In the more realistic scenario of 
searching for objects we do not know the orbits for, we need to increase the tolerance 
to account for small discrepancies from the hypothesis orbit.  In these instances, we are 
still able to reduce the number of tracklets that need to be propagated and clustered by 
approximately 85% in a DP0.3 search.

SAD tracklet rejection in a HelioLinC search takes advantage of our knowledge of the 
expected in-plane motion of a hypothesis orbit to discard tracklets that do not have the 
same motion along their orbit as the hypothesis we’re testing before we take the 
computationally expensive steps of propagation and clustering.  This increases search 
speed and decreases the number of confounding tracklets in phase space without a 
loss of object recovery for the hypothesis orbit.
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THE RANGE HYPOTHESIS IMPLIES AN ORBIT ON AN 
UNSPECIFIED PLANE
HelioLinC1,2,3 works by applying range hypotheses to observed tracklets.  We guess an 
  ,    and    at an epoch          and apply that propagated time varying       to all the 
tracklets we’re searching in order to define a 3D heliocentric position for them all. 
Consider the heliocentric position and decomposed radial and tangential velocity 
vectors with an unknown     for an object below:

By specifying   ,    and    at an epoch          and 
then choosing an arbitrary plane    (we use   : the 
x-y plane in this instance) to propagate in, we can 
calculate       for the hypothesis from the state 
vector we obtain.  If you choose any other   , the    
.      you calculate will be the same as well.       is 
thus independent of the plane    .  Furthermore, if 
you calculate the angular separation from the
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epoch as a function of time         in the heliocentric projection along any plane, that 
amount of separation will also be the same for any    . The process to verify this is 
below:

1. Select a random heliocentric unit vector    (e.g. [1,0,0])
2. Apply a range hypothesis to this vector (e.g.   =3,   =0,   =-1e-5) to get   at the 

hypothesis epoch (let's say         =0)
3. Calculate     at the hypothesis epoch from the equation above
4. Cross   with a random vector representing a plane    (e.g. [0,0,1]) and normalize to 

get    : a direction perpendicular to   to apply     in
5. Rotate     through        in     increments about the axis pointing towards   and keep 

each of the unit vectors representing 360     values
6. Create the velocity vectors at the hypothesis epoch with the equation                     

for each 
7. Propagate   and each    to n different times (e.g. t=1,2,3) for all 360 velocity vectors
8. Calculate       and         for all n times and 360 velocity vectors:       and            

should be the same for all pointings of 

ABSTRACT EXPLOITING ANGULAR MOTION KNOWLEDGE
HelioLinC’s range hypothesis forces all tracklets to move with the same in-plane motion 
along the hypothesized orbit with the plane determined by the individual tracklet’s 
heliocentric positions at the hypothesized range.  The range hypothesis thus constrains 
everything but the plane of the orbit.

As a result, we can test the angular sweep
                  of a tracklet in the heliocentric 
projection against the expected sweep for the 
hypothesis orbit from the first to last observation 
times of a tracklet and check for deviation.  If 
there is a substantial discrepancy, the tracklet 
cannot represent the hypothesized orbit because 
its motion along the orbit is different from the 
hypothesis orbit’s motion.  Therefore, we can 
entirely skip propagation and clustering for 
tracklets with a swept angle discrepancy to the hypothesis orbit.  We refer to these 
rejected tracklets as SAD tracklets.  This optimization reduces both the compute 
requirements and the confounding tracklets in the clustering phase space.
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HELIOLINC RESULTS WITH RUBIN DP0.3 DATA
We use Rubin DP0.34 data (preview data that simulates observations in the solar 
system for Rubin’s LSST) to search a two week window for NEOs using the author’s 
implementation of HelioLinC.  Using perfect hypotheses for a NEO-only subset of DP0.3 
without SAD tracklet rejection, we must propagate and cluster 410,320 tracklets from 
258 exact hypotheses to recover all 258 NEOs in the data.  When we impose a SAD 
tracklet constraint limiting the swept angle discrepancy to 1%, we reduce that 
propagation and clustering count to 11,993 – a 97.1% reduction with no loss in object 
recovery.

For the more realistic scenario of searching for NEOs amongst all DP0.3 transients 
without a priori orbit information, we would have to propagate and cluster 
2,454,259,912 tracklets without SAD tracklet rejection from a grid of 1,352 hypotheses 
to achieve 95% object recovery.  Using a SAD tracklet rejection tolerance of 5% to 
account for our hypotheses not being perfect anymore, the number of tracklets 
propagated and clustered is reduced by 86.7% to 327,444,550 with no loss in object 
recovery.  The tables below summarizes the results:

CONCLUSION


