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ABSTRACT

HelioLinC is an algorithm that discovers solar system objects in transient source
catalogs by propagating tracklets along hypothesized orbits and clustering the resulting
heliocentric positions at common reference epochs. For near-Earth objects (NEOs),
which frequently have non-linearly varying heliocentric ranges as a function of time (%),
the search space of hypothesized orbits is increased compared to other orbit classes.
We can, however, dramatically reduce that space by testing the projected heliocentric
angular sweep of a tracklet against the sweep of the hypothesized orbit. If a tracklet
has a swept angle discrepancy with respect to the hypothesized orbit (a SAD tracklet),
we don’t have to propagate or cluster it which saves both sulbstantial compute time and
reduces the number of confounding tracklets in the clustering phase space. In the limit
where we choose an object’s true r(t) for the hypothesis orbit and reject SAD tracklets,
we can reduce propagation and clustering counts by over 95% without sacrificing
object recovery rates — meaning we propagate and cluster almost nothing other than
the tracklets that conform to the hypothesis orbit. In the more realistic scenario of
searching for objects we do not know the orbits for, we need to increase the tolerance
to account for small discrepancies from the hypothesis orbit. In these instances, we are
still able to reduce the number of tracklets that need to be propagated and clustered by
approximately 85% in a DP0.3 search.

THE RANGE HYPOTHESIS IMPLIES AN ORBIT ON AN
UNSPECIFIED PLANE

HelioLinC '~ works by applying range hypotheses to observed tracklets. We guess an
r, rand 1 at an epoch t.,.., and apply that propagated time varying r(t)to all the
tracklets we’re searching in order to define a 3D heliocentric position for them all.
Consider the heliocentric position and decomposed radial and tangential velocity
vectors with an unknown ¥, for an object below:

Given an observation T at tepoch, assert r, 1, and # then:

. —GM v
P = 5 |
V¢ — r P
Uy
. GM
Vy = ¢7’(7’ | rz )
Now select a random plane n to propagate v; in:
r XN 0
77 U = ——— where n= |0
7 X N .
O |1

Then v = v, 7 + v;U;
Given? =7 - 7 and v, = 7 at tepoch
We can construct a state vector: 7, v, tepoch from our range hypothesis and n

N«? Heliocentric angular

separation Ad(t,) of the
observation at time n
from the olbservation at
the epoch does not
depend on the plane
of the orbit n

By specifying 7, 7and 7 at an epoch Zcpecrn and
then choosing an arbitrary plane 7 (we use z: the
X-y plane in this instance) to propagate in, we can
calculate r(t) for the hypothesis from the state
vector we obtain. If you choose any other n, the
r(t) you calculate will be the same as well. r(t)is
thus independent of the plane .. Furthermore, if
you calculate the angular separation from the
epoch as a function of time A4(¢)in the heliocentric projection along any plane, that
amount of separation will also be the same for any 1. The process to verify this is
below:
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. Select a random heliocentric unit vector 7 (e.g. [1,0,0])

2. Apply a range hypothesis to this vector (e.g. =3, 7=0, T=-1e-5) to get rat the

hypothesis epoch (let's say t.,0.,=0)

Calculate v+ at the hypothesis epoch from the equation above

Cross 7 with a random vector representing a plane n (e.g. [0,0,1]) and normalize to

get ¥, a direction perpendicular to 7°to apply U4 in

5. Rotate Uy through 360°in 1° increments about the axis pointing towards 7and keep

each of the unit vectors representing 360 U values

6. Create the velocity vectors at the hypothesis epoch with the equation v = v,.7 + v,0;

for each Uy

Propagate and each v to n different times (e.g. t=1,2,3) for all 360 velocity vectors

. Calculate r(t)and Ad(t)for all n times and 360 velocity vectors: r(t)and Af(t)
should be the same for all pointings of ¥

ol

0 ~

EXPLOITING ANGULAR MOTION KNOWLEDGE

HelioLinC’s range hypothesis forces all tracklets to move with the same in-plane motion
along the hypothesized orbit with the plane determined by the individual tracklet’s
heliocentric positions at the hypothesized range. The range hypothesis thus constrains
everything but the plane of the orbit.

As a result, we can test the angular sweep

Abt, — Aft; of a tracklet in the heliocentric

projection against the expected sweep for the ® N\
hypothesis orbit from the first to last observation

times of a tracklet and check for deviation. If
there is a substantial discrepancy, the tracklet

cannot represent the hypothesized orbit because

its motion along the orbit is different from the

hypothesis orbit’s motion. Therefore, we can

entirely skip propagation and clustering for

tracklets with a swept angle discrepancy to the hypothesis orbit. We refer to these
rejected tracklets as SAD tracklets. This optimization reduces both the compute
requirements and the confounding tracklets in the clustering phase space.

HELIOLINC RESULTS WITH RUBIN DPO.3 DATA

We use Rubin DP0.3" data (preview data that simulates observations in the solar
system for Rubin’s LSST) to search a two week window for NEOs using the author’s
implementation of HelioLinC. Using perfect hypotheses for a NEO-only subset of DP0.3
without SAD tracklet rejection, we must propagate and cluster 410,320 tracklets from
258 exact hypotheses to recover all 258 NEOs in the data. When we impose a SAD
tracklet constraint limiting the swept angle discrepancy to 1%, we reduce that
propagation and clustering count to 11,993 — a 97.1% reduction with no loss in object
recovery.

Hypothesis implied sweep

Measured tracklet sweep

For the more realistic scenario of searching for NEOs amongst all DPO.3 transients
without a priori orbit information, we would have to propagate and cluster
2,454,259,912 tracklets without SAD tracklet rejection from a grid of 1,352 hypotheses
to achieve 95% object recovery. Using a SAD tracklet rejection tolerance of 5% to
account for our hypotheses not being pertect anymore, the number of tracklets
propagated and clustered is reduced by 86.7% to 327,444,550 with no loss in object
recovery. The tables below summarizes the results:

NEO only transient search with perfect hypotheses Full transient search of 1,352 gridded hypotheses

SAD Tracklet Propagated Objects SAD Tracklet Propagated Objects
Tolerance Tracklets Recovered Tolerance Tracklets Recovered
None 410,320 100% None 2,454,259,912 95%*
5% 54,098 100% 5% 327,444,550 95%
4% 43,572 100%
3% 33,059 100% *This number represents the best case for the
2% 22,561 100% hypotheses grid. 2.5B tracklets cannot be tested
1% 11,993 100% with author's computing resources.

CONCLUSION

SAD tracklet rejection in a HelioLinC search takes advantage of our knowledge of the
expected in-plane motion of a hypothesis orbit to discard tracklets that do not have the
same motion along their orbit as the hypothesis we're testing before we take the
computationally expensive steps of propagation and clustering. This increases search
speed and decreases the number of confounding tracklets in phase space without a
loss of object recovery for the hypothesis orbit.
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